Category Archives: Ubuntu

Ubuntu Security Notices

USN-3013-1: XML-RPC for C and C++ vulnerabilities

Ubuntu Security Notice USN-3013-1

20th June, 2016

xmlrpc-c vulnerabilities

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 12.04 LTS

Summary

Several security issues were fixed in XML-RPC for C and C++.

Software description

  • xmlrpc-c
    – Lightweight RPC library based on XML and HTTP

Details

It was discovered that the Expat code in XML-RPC for C and C++ unexpectedly
called srand in certain circumstances. This could reduce the security of
calling applications. (CVE-2012-6702)

It was discovered that the Expat code in XML-RPC for C and C++ incorrectly
handled seeding the random number generator. A remote attacker could
possibly use this issue to cause a denial of service. (CVE-2016-5300)

Gustavo Grieco discovered that the Expat code in XML-RPC for C and C++
incorrectly handled malformed XML data. If a user or application linked
against XML-RPC for C and C++ were tricked into opening a crafted XML file,
an attacker could cause a denial of service, or possibly execute arbitrary
code. (CVE-2016-0718)

It was discovered that the Expat code in XML-RPC for C and C++ incorrectly
handled malformed XML data. If a user or application linked against XML-RPC
for C and C++ were tricked into opening a crafted XML file, an attacker
could cause a denial of service, or possibly execute arbitrary code.
(CVE-2015-1283, CVE-2016-4472)

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 12.04 LTS:
libxmlrpc-c++4

1.16.33-3.1ubuntu5.2
libxmlrpc-core-c3

1.16.33-3.1ubuntu5.2

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system upgrade you need to restart any applications linked
against XML-RPC for C and C++ to effect the necessary changes.

References

CVE-2012-6702,

CVE-2015-1283,

CVE-2016-0718,

CVE-2016-4472,

CVE-2016-5300

USN-2996-1: Linux kernel vulnerabilities

Ubuntu Security Notice USN-2996-1

9th June, 2016

linux vulnerabilities

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 12.04 LTS

Summary

Several security issues were fixed in the kernel.

Software description

  • linux
    – Linux kernel

Details

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges. (CVE-2016-1583)

Ralf Spenneberg discovered that the USB sound subsystem in the Linux kernel
did not properly validate USB device descriptors. An attacker with physical
access could use this to cause a denial of service (system crash).
(CVE-2016-2184)

Ralf Spenneberg discovered that the ATI Wonder Remote II USB driver in the
Linux kernel did not properly validate USB device descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2185)

Ralf Spenneberg discovered that the PowerMate USB driver in the Linux
kernel did not properly validate USB device descriptors. An attacker with
physical access could use this to cause a denial of service (system crash).
(CVE-2016-2186)

Ralf Spenneberg discovered that the Linux kernel’s GTCO digitizer USB
device driver did not properly validate endpoint descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2187)

Ralf Spenneberg discovered that the I/O-Warrior USB device driver in the
Linux kernel did not properly validate USB device descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2188)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
MCT USB RS232 Converter device driver in the Linux kernel did not properly
validate USB device descriptors. An attacker with physical access could use
this to cause a denial of service (system crash). (CVE-2016-3136)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
Cypress M8 USB device driver in the Linux kernel did not properly validate
USB device descriptors. An attacker with physical access could use this to
cause a denial of service (system crash). (CVE-2016-3137)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
USB abstract device control driver for modems and ISDN adapters did not
validate endpoint descriptors. An attacker with physical access could use
this to cause a denial of service (system crash). (CVE-2016-3138)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
Linux kernel’s USB driver for Digi AccelePort serial converters did not
properly validate USB device descriptors. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3140)

It was discovered that the IPv4 implementation in the Linux kernel did not
perform the destruction of inet device objects properly. An attacker in a
guest OS could use this to cause a denial of service (networking outage) in
the host OS. (CVE-2016-3156)

Andy Lutomirski discovered that the Linux kernel did not properly context-
switch IOPL on 64-bit PV Xen guests. An attacker in a guest OS could use
this to cause a denial of service (guest OS crash), gain privileges, or
obtain sensitive information. (CVE-2016-3157)

Hector Marco and Ismael Ripoll discovered that the Linux kernel would
improperly disable Address Space Layout Randomization (ASLR) for x86
processes running in 32 bit mode if stack-consumption resource limits were
disabled. A local attacker could use this to make it easier to exploit an
existing vulnerability in a setuid/setgid program. (CVE-2016-3672)

It was discovered that an out-of-bounds write could occur when handling
incoming packets in the USB/IP implementation in the Linux kernel. A remote
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2016-3955)

Kangjie Lu discovered an information leak in the ANSI/IEEE 802.2 LLC type 2
Support implementations in the Linux kernel. A local attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-4485)

Kangjie Lu discovered an information leak in the routing netlink socket
interface (rtnetlink) implementation in the Linux kernel. A local attacker
could use this to obtain potentially sensitive information from kernel
memory. (CVE-2016-4486)

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 12.04 LTS:
linux-image-3.2.0-104-omap

3.2.0-104.145
linux-image-3.2.0-104-powerpc-smp

3.2.0-104.145
linux-image-3.2.0-104-generic-pae

3.2.0-104.145
linux-image-3.2.0-104-generic

3.2.0-104.145
linux-image-3.2.0-104-virtual

3.2.0-104.145
linux-image-3.2.0-104-highbank

3.2.0-104.145
linux-image-3.2.0-104-powerpc64-smp

3.2.0-104.145

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References

CVE-2016-1583,

CVE-2016-2184,

CVE-2016-2185,

CVE-2016-2186,

CVE-2016-2187,

CVE-2016-2188,

CVE-2016-3136,

CVE-2016-3137,

CVE-2016-3138,

CVE-2016-3140,

CVE-2016-3156,

CVE-2016-3157,

CVE-2016-3672,

CVE-2016-3955,

CVE-2016-4485,

CVE-2016-4486

USN-2998-1: Linux kernel (Trusty HWE) vulnerabilities

Ubuntu Security Notice USN-2998-1

10th June, 2016

linux-lts-trusty vulnerabilities

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 12.04 LTS

Summary

Several security issues were fixed in the kernel.

Software description

  • linux-lts-trusty
    – Linux hardware enablement kernel from Trusty for Precise

Details

Justin Yackoski discovered that the Atheros L2 Ethernet Driver in the Linux
kernel incorrectly enables scatter/gather I/O. A remote attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-2117)

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges. (CVE-2016-1583)

Jason A. Donenfeld discovered multiple out-of-bounds reads in the OZMO USB
over wifi device drivers in the Linux kernel. A remote attacker could use
this to cause a denial of service (system crash) or obtain potentially
sensitive information from kernel memory. (CVE-2015-4004)

Andy Lutomirski discovered a race condition in the Linux kernel’s
translation lookaside buffer (TLB) handling of flush events. A local
attacker could use this to cause a denial of service or possibly leak
sensitive information. (CVE-2016-2069)

Ralf Spenneberg discovered that the Linux kernel’s GTCO digitizer USB
device driver did not properly validate endpoint descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2187)

Hector Marco and Ismael Ripoll discovered that the Linux kernel would
improperly disable Address Space Layout Randomization (ASLR) for x86
processes running in 32 bit mode if stack-consumption resource limits were
disabled. A local attacker could use this to make it easier to exploit an
existing vulnerability in a setuid/setgid program. (CVE-2016-3672)

Andrey Konovalov discovered that the CDC Network Control Model USB driver
in the Linux kernel did not cancel work events queued if a later error
occurred, resulting in a use-after-free. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3951)

It was discovered that an out-of-bounds write could occur when handling
incoming packets in the USB/IP implementation in the Linux kernel. A remote
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2016-3955)

Kangjie Lu discovered an information leak in the ANSI/IEEE 802.2 LLC type 2
Support implementations in the Linux kernel. A local attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-4485)

Kangjie Lu discovered an information leak in the routing netlink socket
interface (rtnetlink) implementation in the Linux kernel. A local attacker
could use this to obtain potentially sensitive information from kernel
memory. (CVE-2016-4486)

It was discovered that in some situations the Linux kernel did not handle
propagated mounts correctly. A local unprivileged attacker could use this
to cause a denial of service (system crash). (CVE-2016-4581)

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 12.04 LTS:
linux-image-3.13.0-88-generic-lpae

3.13.0-88.135~precise1
linux-image-3.13.0-88-generic

3.13.0-88.135~precise1

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References

CVE-2015-4004,

CVE-2016-1583,

CVE-2016-2069,

CVE-2016-2117,

CVE-2016-2187,

CVE-2016-3672,

CVE-2016-3951,

CVE-2016-3955,

CVE-2016-4485,

CVE-2016-4486,

CVE-2016-4581

USN-2997-1: Linux kernel (OMAP4) vulnerabilities

Ubuntu Security Notice USN-2997-1

10th June, 2016

linux-ti-omap4 vulnerabilities

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 12.04 LTS

Summary

Several security issues were fixed in the kernel.

Software description

  • linux-ti-omap4
    – Linux kernel for OMAP4

Details

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges. (CVE-2016-1583)

Ralf Spenneberg discovered that the USB sound subsystem in the Linux kernel
did not properly validate USB device descriptors. An attacker with physical
access could use this to cause a denial of service (system crash).
(CVE-2016-2184)

Ralf Spenneberg discovered that the ATI Wonder Remote II USB driver in the
Linux kernel did not properly validate USB device descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2185)

Ralf Spenneberg discovered that the PowerMate USB driver in the Linux
kernel did not properly validate USB device descriptors. An attacker with
physical access could use this to cause a denial of service (system crash).
(CVE-2016-2186)

Ralf Spenneberg discovered that the Linux kernel’s GTCO digitizer USB
device driver did not properly validate endpoint descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2187)

Ralf Spenneberg discovered that the I/O-Warrior USB device driver in the
Linux kernel did not properly validate USB device descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2188)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
MCT USB RS232 Converter device driver in the Linux kernel did not properly
validate USB device descriptors. An attacker with physical access could use
this to cause a denial of service (system crash). (CVE-2016-3136)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
Cypress M8 USB device driver in the Linux kernel did not properly validate
USB device descriptors. An attacker with physical access could use this to
cause a denial of service (system crash). (CVE-2016-3137)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
USB abstract device control driver for modems and ISDN adapters did not
validate endpoint descriptors. An attacker with physical access could use
this to cause a denial of service (system crash). (CVE-2016-3138)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
Linux kernel’s USB driver for Digi AccelePort serial converters did not
properly validate USB device descriptors. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3140)

It was discovered that the IPv4 implementation in the Linux kernel did not
perform the destruction of inet device objects properly. An attacker in a
guest OS could use this to cause a denial of service (networking outage) in
the host OS. (CVE-2016-3156)

Andy Lutomirski discovered that the Linux kernel did not properly context-
switch IOPL on 64-bit PV Xen guests. An attacker in a guest OS could use
this to cause a denial of service (guest OS crash), gain privileges, or
obtain sensitive information. (CVE-2016-3157)

Hector Marco and Ismael Ripoll discovered that the Linux kernel would
improperly disable Address Space Layout Randomization (ASLR) for x86
processes running in 32 bit mode if stack-consumption resource limits were
disabled. A local attacker could use this to make it easier to exploit an
existing vulnerability in a setuid/setgid program. (CVE-2016-3672)

It was discovered that an out-of-bounds write could occur when handling
incoming packets in the USB/IP implementation in the Linux kernel. A remote
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2016-3955)

Kangjie Lu discovered an information leak in the ANSI/IEEE 802.2 LLC type 2
Support implementations in the Linux kernel. A local attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-4485)

Kangjie Lu discovered an information leak in the routing netlink socket
interface (rtnetlink) implementation in the Linux kernel. A local attacker
could use this to obtain potentially sensitive information from kernel
memory. (CVE-2016-4486)

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 12.04 LTS:
linux-image-3.2.0-1482-omap4

3.2.0-1482.109

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References

CVE-2016-1583,

CVE-2016-2184,

CVE-2016-2185,

CVE-2016-2186,

CVE-2016-2187,

CVE-2016-2188,

CVE-2016-3136,

CVE-2016-3137,

CVE-2016-3138,

CVE-2016-3140,

CVE-2016-3156,

CVE-2016-3157,

CVE-2016-3672,

CVE-2016-3955,

CVE-2016-4485,

CVE-2016-4486

USN-2999-1: Linux kernel vulnerability

Ubuntu Security Notice USN-2999-1

10th June, 2016

linux vulnerability

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 14.04 LTS

Summary

The system could be made to crash or run programs as an administrator.

Software description

  • linux
    – Linux kernel

Details

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges.

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 14.04 LTS:
linux-image-3.13.0-88-powerpc64-emb

3.13.0-88.135
linux-image-3.13.0-88-powerpc-e500

3.13.0-88.135
linux-image-3.13.0-88-generic

3.13.0-88.135
linux-image-3.13.0-88-lowlatency

3.13.0-88.135
linux-image-3.13.0-88-powerpc64-smp

3.13.0-88.135
linux-image-3.13.0-88-powerpc-smp

3.13.0-88.135
linux-image-3.13.0-88-powerpc-e500mc

3.13.0-88.135
linux-image-3.13.0-88-generic-lpae

3.13.0-88.135

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References

CVE-2016-1583

USN-3001-1: Linux kernel (Vivid HWE) vulnerabilities

Ubuntu Security Notice USN-3001-1

10th June, 2016

linux-lts-vivid vulnerabilities

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 14.04 LTS

Summary

Several security issues were fixed in the kernel.

Software description

  • linux-lts-vivid
    – Linux hardware enablement kernel from Vivid for Trusty

Details

Justin Yackoski discovered that the Atheros L2 Ethernet Driver in the Linux
kernel incorrectly enables scatter/gather I/O. A remote attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-2117)

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges. (CVE-2016-1583)

Jason A. Donenfeld discovered multiple out-of-bounds reads in the OZMO USB
over wifi device drivers in the Linux kernel. A remote attacker could use
this to cause a denial of service (system crash) or obtain potentially
sensitive information from kernel memory. (CVE-2015-4004)

Ralf Spenneberg discovered that the Linux kernel’s GTCO digitizer USB
device driver did not properly validate endpoint descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2187)

Hector Marco and Ismael Ripoll discovered that the Linux kernel would
improperly disable Address Space Layout Randomization (ASLR) for x86
processes running in 32 bit mode if stack-consumption resource limits were
disabled. A local attacker could use this to make it easier to exploit an
existing vulnerability in a setuid/setgid program. (CVE-2016-3672)

Andrey Konovalov discovered that the CDC Network Control Model USB driver
in the Linux kernel did not cancel work events queued if a later error
occurred, resulting in a use-after-free. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3951)

It was discovered that an out-of-bounds write could occur when handling
incoming packets in the USB/IP implementation in the Linux kernel. A remote
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2016-3955)

Vitaly Kuznetsov discovered that the Linux kernel did not properly suppress
hugetlbfs support in X86 paravirtualized guests. An attacker in the guest
OS could cause a denial of service (guest system crash). (CVE-2016-3961)

Kangjie Lu discovered an information leak in the ANSI/IEEE 802.2 LLC type 2
Support implementations in the Linux kernel. A local attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-4485)

Kangjie Lu discovered an information leak in the routing netlink socket
interface (rtnetlink) implementation in the Linux kernel. A local attacker
could use this to obtain potentially sensitive information from kernel
memory. (CVE-2016-4486)

Jann Horn discovered that the InfiniBand interfaces within the Linux kernel
could be coerced into overwriting kernel memory. A local unprivileged
attacker could use this to possibly gain administrative privileges on
systems where InifiniBand related kernel modules are loaded.
(CVE-2016-4565)

It was discovered that in some situations the Linux kernel did not handle
propagated mounts correctly. A local unprivileged attacker could use this
to cause a denial of service (system crash). (CVE-2016-4581)

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 14.04 LTS:
linux-image-3.19.0-61-powerpc-e500mc

3.19.0-61.69~14.04.1
linux-image-3.19.0-61-powerpc64-smp

3.19.0-61.69~14.04.1
linux-image-3.19.0-61-generic-lpae

3.19.0-61.69~14.04.1
linux-image-3.19.0-61-powerpc-smp

3.19.0-61.69~14.04.1
linux-image-3.19.0-61-lowlatency

3.19.0-61.69~14.04.1
linux-image-3.19.0-61-powerpc64-emb

3.19.0-61.69~14.04.1
linux-image-3.19.0-61-generic

3.19.0-61.69~14.04.1

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References

CVE-2015-4004,

CVE-2016-1583,

CVE-2016-2117,

CVE-2016-2187,

CVE-2016-3672,

CVE-2016-3951,

CVE-2016-3955,

CVE-2016-3961,

CVE-2016-4485,

CVE-2016-4486,

CVE-2016-4565,

CVE-2016-4581

USN-3000-1: Linux kernel (Utopic HWE) vulnerabilities

Ubuntu Security Notice USN-3000-1

10th June, 2016

linux-lts-utopic vulnerabilities

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 14.04 LTS

Summary

Several security issues were fixed in the kernel.

Software description

  • linux-lts-utopic
    – Linux hardware enablement kernel from Utopic for Trusty

Details

Justin Yackoski discovered that the Atheros L2 Ethernet Driver in the Linux
kernel incorrectly enables scatter/gather I/O. A remote attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-2117)

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges. (CVE-2016-1583)

Jason A. Donenfeld discovered multiple out-of-bounds reads in the OZMO USB
over wifi device drivers in the Linux kernel. A remote attacker could use
this to cause a denial of service (system crash) or obtain potentially
sensitive information from kernel memory. (CVE-2015-4004)

Ralf Spenneberg discovered that the Linux kernel’s GTCO digitizer USB
device driver did not properly validate endpoint descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2187)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
MCT USB RS232 Converter device driver in the Linux kernel did not properly
validate USB device descriptors. An attacker with physical access could use
this to cause a denial of service (system crash). (CVE-2016-3136)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
Cypress M8 USB device driver in the Linux kernel did not properly validate
USB device descriptors. An attacker with physical access could use this to
cause a denial of service (system crash). (CVE-2016-3137)

Sergej Schumilo, Hendrik Schwartke, and Ralf Spenneberg discovered that the
Linux kernel’s USB driver for Digi AccelePort serial converters did not
properly validate USB device descriptors. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3140)

Hector Marco and Ismael Ripoll discovered that the Linux kernel would
improperly disable Address Space Layout Randomization (ASLR) for x86
processes running in 32 bit mode if stack-consumption resource limits were
disabled. A local attacker could use this to make it easier to exploit an
existing vulnerability in a setuid/setgid program. (CVE-2016-3672)

It was discovered that the Linux kernel’s USB driver for IMS Passenger
Control Unit devices did not properly validate the device’s interfaces. An
attacker with physical access could use this to cause a denial of service
(system crash). (CVE-2016-3689)

Andrey Konovalov discovered that the CDC Network Control Model USB driver
in the Linux kernel did not cancel work events queued if a later error
occurred, resulting in a use-after-free. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3951)

It was discovered that an out-of-bounds write could occur when handling
incoming packets in the USB/IP implementation in the Linux kernel. A remote
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2016-3955)

Kangjie Lu discovered an information leak in the ANSI/IEEE 802.2 LLC type 2
Support implementations in the Linux kernel. A local attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-4485)

Kangjie Lu discovered an information leak in the routing netlink socket
interface (rtnetlink) implementation in the Linux kernel. A local attacker
could use this to obtain potentially sensitive information from kernel
memory. (CVE-2016-4486)

It was discovered that in some situations the Linux kernel did not handle
propagated mounts correctly. A local unprivileged attacker could use this
to cause a denial of service (system crash). (CVE-2016-4581)

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 14.04 LTS:
linux-image-3.16.0-73-powerpc-e500mc

3.16.0-73.95~14.04.1
linux-image-3.16.0-73-powerpc64-smp

3.16.0-73.95~14.04.1
linux-image-3.16.0-73-generic-lpae

3.16.0-73.95~14.04.1
linux-image-3.16.0-73-powerpc-smp

3.16.0-73.95~14.04.1
linux-image-3.16.0-73-lowlatency

3.16.0-73.95~14.04.1
linux-image-3.16.0-73-generic

3.16.0-73.95~14.04.1
linux-image-3.16.0-73-powerpc64-emb

3.16.0-73.95~14.04.1

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References

CVE-2015-4004,

CVE-2016-1583,

CVE-2016-2117,

CVE-2016-2187,

CVE-2016-3136,

CVE-2016-3137,

CVE-2016-3140,

CVE-2016-3672,

CVE-2016-3689,

CVE-2016-3951,

CVE-2016-3955,

CVE-2016-4485,

CVE-2016-4486,

CVE-2016-4581

USN-3002-1: Linux kernel (Wily HWE) vulnerabilities

Ubuntu Security Notice USN-3002-1

10th June, 2016

linux-lts-wily vulnerabilities

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 14.04 LTS

Summary

Several security issues were fixed in the kernel.

Software description

  • linux-lts-wily
    – Linux hardware enablement kernel from Wily for Trusty

Details

Justin Yackoski discovered that the Atheros L2 Ethernet Driver in the Linux
kernel incorrectly enables scatter/gather I/O. A remote attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-2117)

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges. (CVE-2016-1583)

Jason A. Donenfeld discovered multiple out-of-bounds reads in the OZMO USB
over wifi device drivers in the Linux kernel. A remote attacker could use
this to cause a denial of service (system crash) or obtain potentially
sensitive information from kernel memory. (CVE-2015-4004)

Ralf Spenneberg discovered that the Linux kernel’s GTCO digitizer USB
device driver did not properly validate endpoint descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2187)

Hector Marco and Ismael Ripoll discovered that the Linux kernel would
improperly disable Address Space Layout Randomization (ASLR) for x86
processes running in 32 bit mode if stack-consumption resource limits were
disabled. A local attacker could use this to make it easier to exploit an
existing vulnerability in a setuid/setgid program. (CVE-2016-3672)

Andrey Konovalov discovered that the CDC Network Control Model USB driver
in the Linux kernel did not cancel work events queued if a later error
occurred, resulting in a use-after-free. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3951)

It was discovered that an out-of-bounds write could occur when handling
incoming packets in the USB/IP implementation in the Linux kernel. A remote
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2016-3955)

Vitaly Kuznetsov discovered that the Linux kernel did not properly suppress
hugetlbfs support in X86 paravirtualized guests. An attacker in the guest
OS could cause a denial of service (guest system crash). (CVE-2016-3961)

Kangjie Lu discovered an information leak in the ANSI/IEEE 802.2 LLC type 2
Support implementations in the Linux kernel. A local attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-4485)

Kangjie Lu discovered an information leak in the routing netlink socket
interface (rtnetlink) implementation in the Linux kernel. A local attacker
could use this to obtain potentially sensitive information from kernel
memory. (CVE-2016-4486)

Jann Horn discovered that the InfiniBand interfaces within the Linux kernel
could be coerced into overwriting kernel memory. A local unprivileged
attacker could use this to possibly gain administrative privileges on
systems where InifiniBand related kernel modules are loaded.
(CVE-2016-4565)

It was discovered that in some situations the Linux kernel did not handle
propagated mounts correctly. A local unprivileged attacker could use this
to cause a denial of service (system crash). (CVE-2016-4581)

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 14.04 LTS:
linux-image-4.2.0-38-powerpc-e500mc

4.2.0-38.45~14.04.1
linux-image-4.2.0-38-powerpc64-emb

4.2.0-38.45~14.04.1
linux-image-4.2.0-38-powerpc-smp

4.2.0-38.45~14.04.1
linux-image-4.2.0-38-powerpc64-smp

4.2.0-38.45~14.04.1
linux-image-4.2.0-38-lowlatency

4.2.0-38.45~14.04.1
linux-image-4.2.0-38-generic-lpae

4.2.0-38.45~14.04.1
linux-image-4.2.0-38-generic

4.2.0-38.45~14.04.1

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References

CVE-2015-4004,

CVE-2016-1583,

CVE-2016-2117,

CVE-2016-2187,

CVE-2016-3672,

CVE-2016-3951,

CVE-2016-3955,

CVE-2016-3961,

CVE-2016-4485,

CVE-2016-4486,

CVE-2016-4565,

CVE-2016-4581

USN-3004-1: Linux kernel (Raspberry Pi 2) vulnerabilities

Ubuntu Security Notice USN-3004-1

10th June, 2016

linux-raspi2 vulnerabilities

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 15.10

Summary

Several security issues were fixed in the kernel.

Software description

  • linux-raspi2
    – Linux kernel for Raspberry Pi 2

Details

Justin Yackoski discovered that the Atheros L2 Ethernet Driver in the Linux
kernel incorrectly enables scatter/gather I/O. A remote attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-2117)

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges. (CVE-2016-1583)

Jason A. Donenfeld discovered multiple out-of-bounds reads in the OZMO USB
over wifi device drivers in the Linux kernel. A remote attacker could use
this to cause a denial of service (system crash) or obtain potentially
sensitive information from kernel memory. (CVE-2015-4004)

Ralf Spenneberg discovered that the Linux kernel’s GTCO digitizer USB
device driver did not properly validate endpoint descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2187)

Hector Marco and Ismael Ripoll discovered that the Linux kernel would
improperly disable Address Space Layout Randomization (ASLR) for x86
processes running in 32 bit mode if stack-consumption resource limits were
disabled. A local attacker could use this to make it easier to exploit an
existing vulnerability in a setuid/setgid program. (CVE-2016-3672)

Andrey Konovalov discovered that the CDC Network Control Model USB driver
in the Linux kernel did not cancel work events queued if a later error
occurred, resulting in a use-after-free. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3951)

It was discovered that an out-of-bounds write could occur when handling
incoming packets in the USB/IP implementation in the Linux kernel. A remote
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2016-3955)

Vitaly Kuznetsov discovered that the Linux kernel did not properly suppress
hugetlbfs support in X86 paravirtualized guests. An attacker in the guest
OS could cause a denial of service (guest system crash). (CVE-2016-3961)

Kangjie Lu discovered an information leak in the ANSI/IEEE 802.2 LLC type 2
Support implementations in the Linux kernel. A local attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-4485)

Kangjie Lu discovered an information leak in the routing netlink socket
interface (rtnetlink) implementation in the Linux kernel. A local attacker
could use this to obtain potentially sensitive information from kernel
memory. (CVE-2016-4486)

Jann Horn discovered that the InfiniBand interfaces within the Linux kernel
could be coerced into overwriting kernel memory. A local unprivileged
attacker could use this to possibly gain administrative privileges on
systems where InifiniBand related kernel modules are loaded.
(CVE-2016-4565)

It was discovered that in some situations the Linux kernel did not handle
propagated mounts correctly. A local unprivileged attacker could use this
to cause a denial of service (system crash). (CVE-2016-4581)

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 15.10:
linux-image-4.2.0-1031-raspi2

4.2.0-1031.41

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References

CVE-2015-4004,

CVE-2016-1583,

CVE-2016-2117,

CVE-2016-2187,

CVE-2016-3672,

CVE-2016-3951,

CVE-2016-3955,

CVE-2016-3961,

CVE-2016-4485,

CVE-2016-4486,

CVE-2016-4565,

CVE-2016-4581

USN-3003-1: Linux kernel vulnerabilities

Ubuntu Security Notice USN-3003-1

10th June, 2016

linux vulnerabilities

A security issue affects these releases of Ubuntu and its
derivatives:

  • Ubuntu 15.10

Summary

Several security issues were fixed in the kernel.

Software description

  • linux
    – Linux kernel

Details

Justin Yackoski discovered that the Atheros L2 Ethernet Driver in the Linux
kernel incorrectly enables scatter/gather I/O. A remote attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-2117)

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges. (CVE-2016-1583)

Jason A. Donenfeld discovered multiple out-of-bounds reads in the OZMO USB
over wifi device drivers in the Linux kernel. A remote attacker could use
this to cause a denial of service (system crash) or obtain potentially
sensitive information from kernel memory. (CVE-2015-4004)

Ralf Spenneberg discovered that the Linux kernel’s GTCO digitizer USB
device driver did not properly validate endpoint descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2187)

Hector Marco and Ismael Ripoll discovered that the Linux kernel would
improperly disable Address Space Layout Randomization (ASLR) for x86
processes running in 32 bit mode if stack-consumption resource limits were
disabled. A local attacker could use this to make it easier to exploit an
existing vulnerability in a setuid/setgid program. (CVE-2016-3672)

Andrey Konovalov discovered that the CDC Network Control Model USB driver
in the Linux kernel did not cancel work events queued if a later error
occurred, resulting in a use-after-free. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3951)

It was discovered that an out-of-bounds write could occur when handling
incoming packets in the USB/IP implementation in the Linux kernel. A remote
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2016-3955)

Vitaly Kuznetsov discovered that the Linux kernel did not properly suppress
hugetlbfs support in X86 paravirtualized guests. An attacker in the guest
OS could cause a denial of service (guest system crash). (CVE-2016-3961)

Kangjie Lu discovered an information leak in the ANSI/IEEE 802.2 LLC type 2
Support implementations in the Linux kernel. A local attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-4485)

Kangjie Lu discovered an information leak in the routing netlink socket
interface (rtnetlink) implementation in the Linux kernel. A local attacker
could use this to obtain potentially sensitive information from kernel
memory. (CVE-2016-4486)

Jann Horn discovered that the InfiniBand interfaces within the Linux kernel
could be coerced into overwriting kernel memory. A local unprivileged
attacker could use this to possibly gain administrative privileges on
systems where InifiniBand related kernel modules are loaded.
(CVE-2016-4565)

It was discovered that in some situations the Linux kernel did not handle
propagated mounts correctly. A local unprivileged attacker could use this
to cause a denial of service (system crash). (CVE-2016-4581)

Update instructions

The problem can be corrected by updating your system to the following
package version:

Ubuntu 15.10:
linux-image-4.2.0-38-powerpc-e500mc

4.2.0-38.45
linux-image-4.2.0-38-powerpc64-emb

4.2.0-38.45
linux-image-4.2.0-38-powerpc-smp

4.2.0-38.45
linux-image-4.2.0-38-powerpc64-smp

4.2.0-38.45
linux-image-4.2.0-38-lowlatency

4.2.0-38.45
linux-image-4.2.0-38-generic-lpae

4.2.0-38.45
linux-image-4.2.0-38-generic

4.2.0-38.45

To update your system, please follow these instructions:
https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References

CVE-2015-4004,

CVE-2016-1583,

CVE-2016-2117,

CVE-2016-2187,

CVE-2016-3672,

CVE-2016-3951,

CVE-2016-3955,

CVE-2016-3961,

CVE-2016-4485,

CVE-2016-4486,

CVE-2016-4565,

CVE-2016-4581