Update 2014-09-30 19:30 UTC
Questions have arisen around whether Red Hat products are vulnerable to CVE-2014-6277 and CVE-2014-6278. We have determined that RHSA-2014:1306, RHSA-2014:1311, and RHSA-2014:1312 successfully mitigate the vulnerability and no additional actions need to be taken.
Update 2014-09-26 12:00 UTC
We have written a FAQ to address some of the more common questions seen regarding the recent bash issues.
Frequently Asked Questions about the Shellshock Bash flaws
Update 2014-09-25 16:00 UTC
Bash or the Bourne again shell, is a UNIX like shell, which is perhaps one of the most installed utilities on any Linux system. From its creation in 1980, Bash has evolved from a simple terminal based command interpreter to many other fancy uses.
In Linux, environment variables provide a way to influence the behavior of software on the system. They typically consists of a name which has a value assigned to it. The same is true of the Bash shell. It is common for a lot of programs to run Bash shell in the background. It is often used to provide a shell to a remote user (via ssh, telnet, for example), provide a parser for CGI scripts (Apache, etc) or even provide limited command execution support (git, etc)
Coming back to the topic, the vulnerability arises from the fact that you can create environment variables with specially-crafted values before calling the Bash shell. These variables can contain code, which gets executed as soon as the shell is invoked. The name of these crafted variables does not matter, only their contents. As a result, this vulnerability is exposed in many contexts, for example:
- ForceCommand is used in sshd configs to provide limited command execution capabilities for remote users. This flaw can be used to bypass that and provide arbitrary command execution. Some Git and Subversion deployments use such restricted shells. Regular use of OpenSSH is not affected because users already have shell access.
- Apache server using mod_cgi or mod_cgid are affected if CGI scripts are either written in Bash, or spawn subshells. Such subshells are implicitly used by system/popen in C, by os.system/os.popen in Python, system/exec in PHP (when run in CGI mode), and open/system in Perl if a shell is used (which depends on the command string).
- PHP scripts executed with mod_php are not affected even if they spawn subshells.
- DHCP clients invoke shell scripts to configure the system, with values taken from a potentially malicious server. This would allow arbitrary commands to be run, typically as root, on the DHCP client machine.
- Various daemons and SUID/privileged programs may execute shell scripts with environment variable values set / influenced by the user, which would allow for arbitrary commands to be run.
- Any other application which is hooked onto a shell or runs a shell script as using Bash as the interpreter. Shell scripts which do not export variables are not vulnerable to this issue, even if they process untrusted content and store it in (unexported) shell variables and open subshells.
Like “real” programming languages, Bash has functions, though in a somewhat limited implementation, and it is possible to put these Bash functions into environment variables. This flaw is triggered when extra code is added to the end of these function definitions (inside the enivronment variable). Something like:
$ env x='() { :;}; echo vulnerable' bash -c "echo this is a test" vulnerable this is a test
The patch used to fix this flaw, ensures that no code is allowed after the end of a Bash function. So if you run the above example with the patched version of Bash, you should get an output similar to:
$ env x='() { :;}; echo vulnerable' bash -c "echo this is a test" bash: warning: x: ignoring function definition attempt bash: error importing function definition for `x' this is a test
We believe this should not affect any backward compatibility. This would, of course, affect any scripts which try to use environment variables created in the way as described above, but doing so should be considered a bad programming practice.
Red Hat has issued security advisories that fixes this issue for Red Hat Enterprise Linux. Fedora has also shipped packages that fixes this issue.
We have additional information regarding specific Red Hat products affected by this issue that can be found at https://access.redhat.com/site/solutions/1207723
Information on CentOS can be found at http://lists.centos.org/pipermail/centos/2014-September/146099.html.