Tag Archives: rhel6

Risk report update: April to October 2015

Picture of risk playing cardsIn April 2015 we took a look at a years worth of branded vulnerabilities, separating out those that mattered from those that didn’t. Six months have passed so let’s take this opportunity to update the report with the new vulnerabilities that mattered across all Red Hat products.

ABRT (April 2015) CVE-2015-3315:

ABRT (Automatic Bug Reporting Tool) is a tool to help users to detect defects in applications and to create a bug report. ABRT was vulnerable to multiple race condition and symbolic link flaws. A local attacker could use these flaws to potentially escalate their privileges on an affected system to root.

This issue affected Red Hat Enterprise Linux 7 and updates were made available. A working public exploit is available for this issue. Other products and versions of Enterprise Linux were either not affected or not vulnerable to privilege escalation.

JBoss Operations Network open APIs (April 2015) CVE-2015-0297:

Red Hat JBoss Operations Network is a middleware management solution that provides a single point of control to deploy, manage, and monitor JBoss Enterprise Middleware, applications, and services. The JBoss Operations Network server did not correctly restrict access to certain remote APIs which could allow a remote, unauthenticated attacker to execute arbitrary Java methods. We’re not aware of active exploitation of this issue. Updates were made available.

“Venom” (May 2015) CVE-2015-3456:

Venom was a branded flaw which affected QEMU. A privileged user of a guest virtual machine could use this flaw to crash the guest or, potentially, execute arbitrary code on the host with the privileges of the host’s QEMU process corresponding to the guest.

A number of Red Hat products were affected and updates were released. Red Hat products by default would block arbitrary code execution as SELinux sVirt protection confines each QEMU process.

“LogJam” (May 2015) CVE-2015-4000:

TLS connections using the Diffie-Hellman key exchange protocol were found to be vulnerable to an attack in which a man-in-the-middle attacker could downgrade vulnerable TLS connections to weak cryptography which could then be broken to decrypt the connection.

Like Poodle and Freak, this issue is hard to exploit as it requires a man in the middle attack. We’re not aware of active exploitation of this issue. Various packages providing cryptography were updated.

BIND DoS (July 2015) CVE-2015-5477:

A flaw in the Berkeley Internet Name Domain (BIND) allowed a remote attacker to cause named (functioning as an authoritative DNS server or a DNS resolver) to exit, causing a denial of service against BIND.

This issue affected the versions of BIND shipped with all versions of Red Hat Enterprise Linux. A public exploit exists for this issue. Updates were available the same day as the issue was public.

libuser privilege escalation (July 2015) CVE-2015-3246:

The libuser library implements a interface for manipulating and administering user and group accounts. Flaws in libuser could allow authenticated local users with shell access to escalate privileges to root.

Red Hat Enterprise Linux 6 and 7 were affected and updates available same day as issue was public. Red Hat Enterprise Linux 5 was affected and a mitigation was published.  A public exploit exists for this issue.

Firefox lock file stealing via PDF reader (August 2015) CVE-2015-4495:

A flaw in Mozilla Firefox could allow an attacker to access local files with the permissions of the user running Firefox. Public exploits exist for this issue, including as part of Metasploit, and targeting Linux systems.

This issue affected Firefox shipped with versions of Red Hat Enterprise Linux and updates were available the next day after the issue was public.

Firefox add-on permission warning (August 2015) CVE-2015-4498:

Mozilla Firefox normally warns a user when trying to install an add-on if initiated by a web page.  A flaw allowed this dialog to be bypassed.

This issue affected Firefox shipped with Red Hat Enterprise Linux versions and updates were available the same day as the issue was public.

Conclusion

The issues examined in this report were included because they were meaningful.  This includes the issues that are of a high severity and are likely easy to be exploited (or already have a public working exploit), as well as issues that were highly visible or branded (with a name or logo), regardless of their severity.

Between 1 April 2015 and 31 October 2015 for every Red Hat product there were 39 Critical Red Hat Security Advisories released, addressing 192 Critical vulnerabilities.  Aside from the issues in this report which were rated as having Critical security impact, all other issues with a Critical rating were part of Red Hat Enterprise Linux products and were browser-related: Firefox, Chromium, Adobe Flash, and Java (due to the browser plugin).

Our dedicated Product Security team continue to analyse threats and vulnerabilities against all our products every day, and provide relevant advice and updates through the customer portal. Customers can call on this expertise to ensure that they respond quickly to address the issues that matter.  Hear more about vulnerability handling in our upcoming virtual event: Secure Foundations for Today and Tomorrow.

Update on Red Hat Enterprise Linux 6 and FIPS 140 validations

Red Hat achieved its latest successful FIPS 140 validation back in April 2013. Since then, a lot has happened. There have been well publicized attacks on cryptographic protocols, weaknesses in implementations, and changing government requirements. With all of these issues in play, we want to explain what we are doing about it.

One of the big changes was that we enabled support of Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie Hellman (ECDH) in Red Hat Enterprise Linux to meet the National Institute of Standards and Technology’s (NIST’s) “Suite B” requirements taking effect this year. Because we added new ciphers, we knew we needed to re-certify. Re-certification brings many advantages to our government customers, who not only benefit from the re-certification, but they also maintain coverage from our last FIPS 140 validation effort. One advantage of re-certification is that we have picked up fixes for BEAST, Lucky 13, Heartbleed, Poodle, and some lesser known vulnerabilities around certificate validation. It should be noted that these attacks are against higher level protocols that are not part of any crypto primitives covered by a FIPS validation. But, knowing the fixes are in the packages under evaluation should give customers additional peace of mind.

The Red Hat Enterprise Linux 6 re-certification is now under way. It includes reworked packages to meet all the updated requirements that NIST has put forth taking effect Jan. 1, 2014, such as a new Deterministic Random Bit Generator (DRGB) as specified in SP 800-90A (PDF); an updated RSA key generation technique as specified in FIPS 186-4 (PDF); and updated key sizes and algorithms as specified in SP 800-131A (PDF).

Progress on the certification is moving along – we’ve completed review and preliminary testing and are now applying for Cryptographic Algorithm Validation System (CAVS) certificates. After that, we’ll submit validation paperwork to NIST. All modules being re-certified are currently listed on NIST’s Modules in Process page, except Volume Encryption (dm-crypt). Its re-certification is taking a different route because the change is so minor thus not needing CAVS testing. We are expecting the certifications to be completed early this year.

Enterprise Linux 6.5 to 6.6 risk report

Red Hat Enterprise Linux 6.6 was released the 14th of October, 2014, eleven months since the release of 6.5 in November 2013. So lets use this opportunity to take a quick look back over the vulnerabilities and security updates made in that time, specifically for Red Hat Enterprise Linux 6 Server.

Red Hat Enterprise Linux 6 is in its fourth year since release, and will receive security updates until November 30th 2020.

Errata count

The chart below illustrates the total number of security updates issued for Red Hat Enterprise Linux 6 Server if you had installed 6.5, up to and including the 6.6 release, broken down by severity. It’s split into two columns, one for the packages you’d get if you did a default install, and the other if you installed every single package.

During installation there actually isn’t an option to install every package, you’d have to manually select them all, and it’s not a likely scenario. For a given installation, the number of package updates and vulnerabilities that affected you will depend on exactly what you selected during installation and which packages you have subsequently installed or removed.

Security errata 6.5 to 6.6 Red Hat Enterprise Linux 6 ServerFor a default install, from release of 6.5 up to and including 6.6, we shipped 47 advisories to address 219 vulnerabilities. 2 advisories were rated critical, 25 were important, and the remaining 20 were moderate and low.

Or, for all packages, from release of 6.5 up to and including 6.6, we shipped 116 advisories to address 399 vulnerabilities. 13 advisories were rated critical, 53 were important, and the remaining 50 were moderate and low.

You can cut down the number of security issues you need to deal with by carefully choosing the right Red Hat Enterprise Linux variant and package set when deploying a new system, and ensuring you install the latest available Update release.

 

Critical vulnerabilities

Vulnerabilities rated critical severity are the ones that can pose the most risk to an organisation. By definition, a critical vulnerability is one that could be exploited remotely and automatically by a worm. However we also stretch that definition to include those flaws that affect web browsers or plug-ins where a user only needs to visit a malicious (or compromised) website in order to be exploited. Most of the critical vulnerabilities we fix fall into that latter category.

The 13 critical advisories addressed 42 critical vulnerabilities across six different projects:

  • An update to php RHSA-2013:1813 (December 2013).  A memory corruption flaw was found in the way the openssl_x509_parse() function of the PHP openssl extension parsed X.509 certificates. A remote attacker could use this flaw to provide a malicious self-signed certificate or a certificate signed by a trusted authority to a PHP application using the aforementioned function, causing the application to crash or, possibly, allow the attacker to execute arbitrary code with the privileges of the
    user running the PHP interpreter.
  • An update to JavaOpenJDK
    • RHSA-2014:0026 (January 2014).  Multiple improper permission check issues were discovered in the Serviceability, Security, CORBA, JAAS, JAXP, and Networking components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass certain Java sandbox restrictions.
    • RHSA-2014:0406 (April 2014).  An input validation flaw was discovered in the medialib library in the 2D component. A specially crafted image could trigger Java Virtual Machine memory corruption when processed. A remote attacker, or an untrusted Java application or applet, could possibly use this flaw to execute arbitrary code with the privileges of the user running the Java Virtual Machine.
    • RHSA-2014:0889 (July 2014).  It was discovered that the Hotspot component in OpenJDK did not properly verify bytecode from the class files. An untrusted Java application or applet could possibly use these flaws to bypass Java sandbox restrictions.
  • An update to ruby RHSA-2013:1764 (November 2014).  A buffer overflow flaw was found in the way Ruby parsed floating point numbers from their text representation. If an application using Ruby accepted untrusted input strings and converted them to floating point numbers, an attacker able to provide such input could cause the application to crash or, possibly, execute arbitrary code with the privileges of the
    application.
  • An update to nss and nspr RHSA-2014:0917 (July 2014).  A race condition was found in the way NSS verified certain certificates.  A remote attacker could use this flaw to crash an application using NSS or, possibly, execute arbitrary code with the privileges of the user running that application.
  • An update to bash (Shellshock) RHSA-2014:1293 (September 2014).  A flaw was found in the way Bash evaluated certain specially crafted environment variables. An attacker could use this flaw to override or bypass environment restrictions to execute shell commands. Certain services and applications allow remote unauthenticated attackers to provide environment variables, allowing them to exploit this issue.
  • An update to Firefox:
    • RHSA-2013:1812 (December 2013).   Several flaws were found in the processing of malformed web content. A web page containing malicious content could cause Firefox to terminate unexpectedly or, potentially, execute arbitrary code with the privileges of the user running Firefox.
    • RHSA-2014:0132 (February 2014).  Several flaws were found in the processing of malformed web content. A web page containing malicious content could cause Firefox to crash or, potentially, execute arbitrary code with the privileges of the user running Firefox.
    • RHSA-2014:0310 (March 2014).  Several flaws were found in the processing of malformed web content. A web page containing malicious content could cause Firefox to crash or, potentially, execute arbitrary code with the privileges of the user running Firefox.
    • RHSA-2014:0448 (April 2014).  Several flaws were found in the processing of malformed web content. A web page containing malicious content could cause Firefox to crash or, potentially, execute arbitrary code with the privileges of the user running Firefox.
    • RHSA-2014:0741 (June 2014).  Several flaws were found in the processing of malformed web content. A web page containing malicious content could cause Firefox to crash or, potentially, execute arbitrary code with the privileges of the user running Firefox.
    • RHSA-2014:0919 (July 2014).  Several flaws were found in the processing of malformed web content. A web page containing malicious content could cause Firefox to crash or, potentially, execute arbitrary code with the privileges of the user running Firefox.
    • RHSA-2014:1144 (September 2014). Several flaws were found in the processing of malformed web content. A web page containing malicious content could cause Firefox to crash or, potentially, execute arbitrary code with the privileges of the user running Firefox.
    • RHSA-2014:1635 (October 2014).  Several flaws were found in the processing of malformed web content. A web page containing malicious content could cause Firefox to crash or, potentially, execute arbitrary code with the privileges of the user running Firefox.
      A flaw was found in the Alarm API, which allows applications to schedule
      actions to be run in the future. A malicious web application could use this
      flaw to bypass cross-origin restrictions.

97% of updates to correct 42 critical vulnerabilities were available via Red Hat Network either the same day or the next calendar day after the issues were public.

Previous update releases

We generally measure risk in terms of the number of vulnerabilities, but the actual effort in maintaining a Red Hat Enterprise Linux system is more related to the number of advisories we released: a single Firefox advisory may fix ten different issues of critical severity, but takes far less total effort to manage than ten separate advisories each fixing one critical PHP vulnerability.

To compare these statistics with previous update releases we need to take into account that the time between each update release is different. So looking at a default installation and calculating the number of advisories per month gives the following chart:

Security Errata per month Red Hat Enterprise Linux 6 Server Default InstallThis data is interesting to get a feel for the risk of running Enterprise Linux 6 Server, but isn’t really useful for comparisons with other major versions, distributions, or operating systems — for example, a default install of Red Hat Enterprise Linux 6 Server does not include Firefox, but Red Hat Enterprise Linux 5 Server does. You can use our public security measurement data and tools, and run your own custom metrics for any given Red Hat product, package set, timescales, and severity range of interest.

See also: 6.5, 6.4, 6.3, 6.2, and 6.1 risk reports.